Remarks on Invariant Subspaces for Finite Dimensional Operators

Sing-Cheong Ong Department of Pure Mathematics University of Waterloo Waterloo, Ontario, Canada N2L 3G1

Submitted by Chandler Davis

ABSTRACT

Every invariant subspace of the commutant $\{A\}'$ of an operator A is the range of some operator in $\{A\}'$. If two operators have the same lattice of invariant subspaces, then each is similar to a polynomial in the other.

Let \mathcal{K} be a finite dimensional (complex) vector space of dimension n. We denote the subspace generated by x_1, x_2, \ldots , vectors in \mathcal{K} , by $[x_1, x_2, \ldots]$. A subspace \mathfrak{M} of \mathcal{K} is an invariant subspace for an (linear) operator on \mathcal{K} if $A\mathfrak{M}\subseteq\mathfrak{M}$; it is an invariant subspace for a set \mathbb{S} of operators if it is invariant for every operator in \mathbb{S} . The set of invariant subspaces for an operator A, with subspace sum as join and intersection as meet, is a lattice, and is denoted by Lat A. The commutant of a set \mathbb{S} of operators, denoted by \mathbb{S}' , is the set of operators T such that TS = ST for all $S \in \mathbb{S}$.

We show here that (1) every invariant subspace for the commutant $\{A\}'$ of a single operator A is the range of some operator in $\{A\}'$; (2) if two operators have the same lattice of invariant subspaces, then each of them is similar to a polynomial in the other. We begin with the following lemma.

LEMMA 1. If N is a nilpotent operator on \mathcal{K} (n-dimensional) with a cyclic vector x, then every invariant subspace for N is the range of a power of N.

Proof. The set $\{x, Nx, \ldots, N^{n-1}x\}$ is a basis of the space \mathcal{H} , and Lat $N = \{0, [N^{n-1}x], [N^{n-2}x, N^{n-1}x], \ldots, \mathcal{H}\}$. For each $j = 1, 2, \ldots, n$

$$[N^{n-1}x, N^{n-2}, \dots, N^{n-j}x] = (N^{n-j})\mathcal{K}.$$

PROPOSITION 2. If A is an operator on \mathcal{K} , then any invariant subspace for $\{A\}'$ is the range of some operator in $\{A\}'$.

LINEAR ALGEBRA AND ITS APPLICATIONS 42:99-101 (1982)

© Elsevier Science Publishing Co., Inc., 1982

52 Vanderbilt Ave., New York, NY 10017

99

Proof. Let $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \cdots \oplus \mathcal{H}_k$ be the Jordan decomposition of \mathcal{H} with respect to A, so that each \mathcal{H}_i reduces A and the restriction of A to \mathcal{H}_i is a single Jordan cell [2]. Then

$$A = A_1 \oplus A_2 \oplus \cdots \oplus A_k$$

and each A_i is of the form $\lambda_i I_i + N_i$, where I_i denotes the identity operator on \mathcal{K}_i and N_i is a nilpotent operator on \mathcal{K}_i with a cyclic vector. Let \mathfrak{M} be an invariant subspace for $\{A\}'$, and E_i the idempotent projecting \mathcal{K} onto \mathcal{K}_i along $\mathcal{K}_1 \oplus \cdots \oplus \mathcal{K}_{i-1} \oplus \mathcal{K}_{i+1} \oplus \cdots \oplus \mathcal{K}_k$. Then $E_i \mathfrak{M}$ is invariant under A_i , and hence under N_i . By Lemma 1, $E_i \mathfrak{M} = (N_i^{l_i}) \mathcal{K}_i$ for some positive integer l_i . Since

$$N_i N_i = 0 = N_i N_i$$
 if $i \neq j$,

we have

$$\mathfrak{M} = E_1 \mathfrak{M} \oplus E_2 \mathfrak{M} \oplus \cdots \oplus E_k \mathfrak{M} = N_1^{l_1} \mathfrak{K}_1 \oplus N_2^{l_2} \mathfrak{K}_2 \oplus \cdots \oplus N_k^{l_k} \mathfrak{K}_k$$
$$= (N_1^{l_1} \oplus \cdots \oplus N_k^{l_k}) \mathfrak{K}.$$

Also, $N_1^{l_1} \oplus \cdots \oplus N_k^{l_k}$ commutes with A, since each N_i does. This completes the proof.

In [1] Brickman and Fillmore prove that if A and B are commuting operators on a finite dimensional space and every invariant subspace of A is invariant under B, then B is a polynomial in A. The following natural question was raised by Fillmore (through a conversation): what is the conclusion if the commutativity assumption is dropped and the inclusion of invariant subspace lattices is strengthened to equality?

The following example shows that B can have exactly the same lattice of invariant subspaces as A without being a polynomial in A.

EXAMPLE 3. On the space \mathbb{C}^3 , let A and B be defined, respectively, by the matrices

	0	1	0		0	1	0]	
1	0 0 0	0	0 1 0	,	0 0 0	0	$\begin{bmatrix} 0\\2\\0 \end{bmatrix}$	
	0	0	0		0	0	0	

with respect to the standard orthonormal ordered basis $\{e_1, e_2, e_3\}$. Then A

and B have exactly the same lattice of invariant subspaces, viz. $\{\{0\}, [e_1], [e_1, e_2], [e_1, e_2, e_3] = \mathbb{C}^3\}$, while neither is a polynomial in the other. (In fact A and B do not commute.) But B is similar to A. The following result shows that this is the general situation.

PROPOSITION 4. If A and B are operators on the n-dimensional space \mathcal{H} , with exactly the same lattice of invariant subspaces, then each is similar to a polynomial in the other.

Proof. Let $\mathfrak{K} = \mathfrak{K}_1 \oplus \mathfrak{K}_2 \oplus \cdots \oplus \mathfrak{K}_k$ be the Jordan decomposition of \mathfrak{K} with respect to A as in the proof of the previous proposition. Then $A = A_1 \oplus A_2 \oplus \cdots \oplus A_k$, and by the hypothesis, each \mathfrak{K}_i reduces B, so $B = B_1 \oplus B_2 \oplus \cdots \oplus B_k$, where B_i is the restriction $B | \mathfrak{K}_i$. Each A_i is a nilpotent operator with a cyclic vector plus a scalar, B_i has exactly the same lattice of invariant subspaces as A_i , and hence each B_i is also a nilpotent operator with a cyclic vector plus a scalar. Therefore, $A_i = \lambda_i E_i + S_i^{-1} B_i S_i$, where S_i is an invertible operator leaving invariant every invariant subspace of A_i , and E_i is the identity operator on \mathfrak{K}_i (or the idempotent projecting \mathfrak{K} onto \mathfrak{K}_i along $\mathfrak{K}_1 \oplus \cdots \oplus \mathfrak{K}_{i-1} \oplus \mathfrak{K}_{i+1} \oplus \cdots \oplus \mathfrak{K}_k$). Let $S = S_1 \oplus S_2 \oplus \cdots \oplus S_k$. Then

$$SE_{i} = E_{i}S = S_{i}, \qquad S^{-1}BS + \sum_{j=1}^{k} \lambda_{j}E_{j} = A.$$

It is easy to see that A_i and A_j have the same eigenvalue if and only if B_i and B_j do. Since each sum of the E_j 's, with A_j 's having the same eigenvalue, is a polynomial in A [2], and S commutes with each E_j , we obtain $S^{-1}BS = p(A)$ for some polynomial p. The proof is complete.

REFERENCES

- 1 L. Brickman and P. A. Fillmore, The invariant subspace lattice of a linear transformation, *Canad. J. Math.* 19:810-822 (1967).
- 2 K. Hoffman and R. Kunze, Linear Algebra, Prentice-Hall, 1962.

Received 23 February 1981