Remarks on Invariant Subspaces for Finite Dimensionai Operators

Sing-Cheong Ong
Department of Pure Mathematics
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

Submitted by Chandler Davis

Abstract

Every invariant subspace of the commutant $\{A\}^{\prime}$ of an operator A is the range of some operator in $\{A\}^{\prime}$. If two operators have the same lattice of invariant subspaces, then each is similar to a polynomial in the other.

Let ${ }^{\mathscr{C}}$ be a finite dimensional (complex) vector space of dimension n. We denote the subspace generated by x_{1}, x_{2}, \ldots, vectors in \mathcal{H}, by $\left[x_{1}, x_{2}, \ldots\right]$. A subspace \mathscr{N} of \mathscr{H} is an invariant subspace for an (linear) operator on \mathscr{H} if $A \mathscr{R} \subseteq \mathscr{R}$; it is an invariant subspace for a set \mathcal{S} of operators if it in invariant for every operator in \mathcal{S}. The set of invariant subspaces for an operator A, with subspace sum as join and intersection as meet, is a lattice, and is denoted by Lat A. The commutant of a set \mathcal{S} of operators, denoted by \mathfrak{S}^{\prime}, is the set of operators T such that $T S=S T$ for all $S \in \mathcal{S}$.

We show here that (1) every invariant subspace for the commutant $\{A\}^{\prime}$ of a single operator A is the range of some operator in $\{A\}^{\prime} ;(2)$ if two operators have the same lattice of invariant subspaces, then each of them is similar to a polynomial in the other. We begin with the following lemma.

Lemma 1. If N is a nilpotent operator on \mathscr{K} (n-dimensional) with a cyclic vector x, then every invariant subspace for N is the range of a power of N.

Proof. The set $\left\{x, N x, \ldots, N^{n-1} x\right\}$ is a basis of the space \mathscr{H}, and Lat $N=\left\{0,\left[N^{n-1} x\right],\left[N^{n-2} x, N^{n-1} x\right], \ldots, \mathscr{H}\right\}$. For each $j=1,2, \ldots, n$

$$
\left[N^{n-1} x, N^{n-2}, \ldots, N^{n-i} x\right]=\left(N^{n-i}\right) \mathcal{H}
$$

Proposition 2. If A is an operator on \mathcal{H}, then any invariant subspace for $\{A\}^{\prime}$ is the range of some operator in $\{A\}^{\prime}$.

Proof. Let $\mathcal{H}=\mathcal{K}_{1} \oplus \mathcal{H}_{2} \oplus \cdots \oplus \mathcal{K}_{k}$ be the Jordan decomposition of \mathcal{H} with respect to A, so that each \mathscr{K}_{i} reduces A and the restriction of A to \mathscr{H}_{j} is a single Jordan cell [2]. Then

$$
A=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{k}
$$

and each A_{i} is of the form $\lambda_{i} I_{i}+N_{i}$, where I_{i} denotes the identity operator on \mathscr{H}_{i} and N_{i} is a nilpotent operator on \mathcal{K}_{i} with a cyclic vector. Let \mathfrak{N} be an invariant subspace for $\{A\}^{\prime}$, and E_{i} the idempotent projecting \mathcal{H} onto \mathscr{K}_{j} along $\mathcal{K}_{1} \oplus \cdots \oplus \mathcal{K}_{i-1} \oplus \mathcal{K}_{i-1} \oplus \mathcal{K}_{i+1} \oplus \cdots \oplus \mathcal{K}_{k}$. Then $E_{i} \mathscr{N}$ is invariant under A_{i}, and hence under N_{i}. By Lemma 1, $E_{i} \mathfrak{R}=\left(N_{i}^{l_{i}}\right) \mathcal{K}_{i}$ for some positive integer l_{i}. Since

$$
N_{i} N_{i}=0=N_{i} N_{i} \quad \text { if } \quad i \neq i,
$$

we have

$$
\begin{aligned}
\mathfrak{H} & =E_{1} \mathfrak{M} \oplus E_{2} \mathfrak{M} \oplus \cdots \oplus E_{k} \mathfrak{M}=N_{1}^{l_{1}} \mathcal{H}_{1} \oplus N_{2}^{l_{2}} \mathcal{H}_{2} \oplus \cdots \oplus N_{k}^{l_{k}} \mathcal{K}_{k} \\
& =\left(N_{1} l_{1} \oplus \cdots \oplus N_{k}^{l_{k}}\right) \mathfrak{H} .
\end{aligned}
$$

Also, $N_{1}^{l_{1}} \oplus \cdots \oplus N_{k}^{l_{k}}$ commutes with A, since each N_{i} does. This completes the proof.

In [1] Brickman and Fillmore prove that if A and B are commuting operators on a finite dimensional space and every invariant subspace of A is invariant under B, then B is a polynomial in A. The following natural question was raised by Fillmore (through a conversation): what is the conclusion if the commutativity assumption is dropped and the inclusion of invariant subspace lattices is strengthened to equality?

The following example shows that B can have exactly the same lattice of invariant subspaces as A without being a polynomial in A.

Example 3. On the space \mathbb{C}^{3}, let A and B be defined, respectively, by the matrices

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

with respect to the standard orthonormal ordered basis $\left\{e_{1}, e_{2}, e_{3}\right\}$. Then A
and B have exactly the same lattice of invariant subspaces, viz. $\left\{\{0\},\left[e_{1}\right]\right.$, $\left.\left[e_{1}, e_{2}\right],\left[e_{1}, e_{2}, e_{3}\right]=\mathbb{C}^{3}\right\}$, while neither is a polynomial in the other. (In fact A and B do not commute.) But B is similar to A. The following result shows that this is the general situation.

Proposition 4. If A and B are operutors on the n-dimensional space \mathcal{K}, with exactly the same lattice of invariant subspaces, then each is similar to a polynomial in the other.

Proof. Let $\mathscr{K}=\mathscr{K}_{1} \oplus \mathscr{K}_{2} \oplus \cdots \oplus \mathcal{K}_{k}$ be the Jordan decomposition of \mathscr{K} with respect to A as in the proof of the previous proposition. Then $A=A_{1} \oplus$ $A_{2} \oplus \cdots \oplus A_{k}$, and by the hypothesis, each \mathscr{F}_{i} reduces B, so $B=B_{1} \oplus B_{2}$ $\oplus \cdots \oplus B_{k}$, where B_{i} is the restriction $B \mid \mathscr{F}_{i}$. Each A_{j} is a nilpotent operator with a cyclic vector plus a scalar, B_{j} has exactly the same lattice of invariant subspaces as A_{i}, and hence each B_{i} is also a nilpotent operator with a cyclic vector plus a scalar. Therefore, $A_{i}=\lambda_{i} E_{i}+S_{j}^{-1} B_{i} S_{i}$, where S_{i} is an invertible operator leaving invariant every invariant subspace of A_{j}, and F_{j} is the identity operator on \mathscr{H}_{i} (or the idempotent projecting \mathscr{H} onto \mathscr{H}_{i} along $\left.\mathcal{H}_{1} \oplus \cdots \oplus \mathcal{H}_{j-1} \oplus \mathcal{H}_{i+1} \oplus \cdots \oplus \mathcal{H}_{k}\right)$. Let $S=S_{1} \oplus S_{2} \oplus \cdots \oplus S_{k}$. Then

$$
S E_{i}=E_{i} S=S_{i}, \quad S^{-1} B S+\sum_{i=1}^{k} \lambda_{i} E_{i}=A
$$

It is easy to see that A_{i} and A_{j} have the same eigenvalue if and only if B_{i} and B_{i} do. Since each sum of the E_{i} 's, with A_{i} 's having the same eigenvalue, is a polynomial in A [2], and S commutes with each E_{i}, we obtain $S^{-1} B S=p(A)$ for some polynomial p. The proof is complete.

REFERENCES

1 L. Brickman and P. A. Fillmore, The invariant subspace lattice of a linear transformation, Canad. J. Math. 19:810-822 (1967).
2 K. Hoffman and R. Kunze, Linear Algebra, Prentice-Hall, 1962.

